

ETA® International Common Formulas

For use on all Basic Electronics Exams – Associate CET (CETa), Basic Systems Technician (BST), Electronics Modules (EM1-5), Student Electronics Technician (SET) as well as the General Communications Technician-Level 1 (GCT1) Exam

Conversion Factors

π (Pi) = 3.14	1 meter = 3.28 feet
2π = 6.28	1 inch = 2.54 centimeters
logπ = 0.497	1 radian = 57.3°

Resonant Frequency Formulas

f (kHz), L (Microhenries), C (Microfarads) $f_{\rm kHz} = 159.2 / \sqrt{\rm LC}$

f (Hz), L (Henries), C (Farads)

$$f_{\rm resonant} = 2\pi\sqrt{\rm LC}$$

Frequency & Wavelength Formulas $f = frequency, \lambda = wavelength$

 $0.5\lambda = 180^{\circ} = half wave and <math>0.25\lambda = 90^{\circ} = quarter wave$ $f_{\rm Hz} = (3 \times 10^8) / \lambda_{\rm meters}$ or $f_{\rm MHz} = 984 / \lambda_{\rm feet}$ $\lambda_{\text{meters}} = (3 \times 10^8) / f_{\text{Hz}}$ or $\lambda_{\text{feet}} = 984 / f_{\text{MHz}}$ $c = f \times \lambda$ where **c** is the speed of light

Sine Wave Conversion

- Effective value (RMS) = 0.707 x Peak Value = 1.11 x Average Value
- Peak Value = 1.414 x Effective Value (RMS) = 1.57 x Average Value
- Average Value over positive half period = 0.637 x Peak Value = 0.9 x Effective Value (RMS)
- Identify: Waveform, Peak (amplitude), RMS, 1 cycle over time period (frequency), Peak to peak, and practical average

Gain dB = $20\log_{10} (V_{out} / V_{in})$

Inverting Op-Amp Gain $(A_v) = (V_{OUT} / V_{IN}) = - (Rf / R_I)$

Resistors In Series $R = R_1 + R_2 + R_3...$ Inductors Connected In Series

 $L = L_1 + L_2 + L_3 \dots$

Capacitors Connected In Parallel $C = C_1 + C_2 + C_3 + \dots$

Impedance For A Series Circuit where Z is impedance $Z = \sqrt{R^2 + (X_1 - X_2)^2}$

Ratio Of 2 Power Levels In Decibels Gain dB = $10\log_{10} (P_2 / P_1)$

Non-Inverting Op-Amp Gain $(A_v) = (V_{out} / V_{iN}) = 1 + (Rf / R_i)$

Resistors In Parallel $1 / R = (1 / R_1) + (1 / R_2) + (1 / R_3)...$

Inductors Connected In Parallel $1 / L = (1 / L_1) + (1 / L_2) + (1 / L_3)...$

Capacitors Connected In Series

 $1 / C = (1 / C_1) + (1 / C_2) + (1 / C_3) + \dots$

Impedance For R And X In Parallel

RX $Z = \sqrt{R^2 + X^2}$

Resistor Color Code Chart - '#' Band

Color	Digit Value	Decimal Multiplier	Tolerance	Temp. Coeff.
Black	0	1Ω		250
Brown	1	10 Ω	± 1%	100
Red	2	100 Ω	± 2%	50
Orange	3	1 kΩ		15
Yellow	4	10 kΩ		25
Green	5	100 kΩ	± 0.5%	20
Blue	6	1 MΩ	± 0.25%	10
Violet	7	10 MΩ	± 0.10%	5
Gray	8	100 MΩ	± 0.05%	1
White	9	1 GΩ		
Gold		0.1Ω	± 5%	
Silver		0.01 Ω	± 10%	
No Color			± 20%	(ppm)

PEMDAS Rule

Parentheses, Exponents, Multiplication, Division, Add, Subtract

Time Constants

T (Greek Tau), R (ohms), C (Farads), L (Henries) RL circuit: 1 T (sec) = $L(H) / R(\Omega)$ RC circuit: 1 T (sec) = $R(\Omega) \times C(F)$

Compute Charge Or Quantity of Electricity & Energy Storage In A Capacitor

Q (Coulombs), W (Joules), C (Farads), V (Volts) $Q = C \times V$ $W = \frac{1}{2} C \times V^2$

Capacitor Current Equations (storing energy in electric field)

I (Amps), Q and C and V (as above), d {delta Δ } (Change), t (Time) I = C(dV/dt) from $C^*dV = dQ$ and I = dQ/dt

Inductor Voltage Equations

L (Henries), d, i, t, V, and W (as above)

V = L(di / dt)Depatement Of Industan Department Of Connectory

 $W = \frac{1}{2}L \times i^2$

Reactance Of Inductors	Reactance Of Capacitors
\boldsymbol{X}_{L} & \boldsymbol{X}_{c} (Reactance), \boldsymbol{C} and \boldsymbol{L}	(as above), f (Frequency)
$X_{L} = 2\pi x f x L$	$X_{c} = 1 / (2\pi x f x C)$

Battery Internal Resistance

 $V_{out} = EMF - (R_{int} \times I_{out})$

International System of Units (SI)

Prefix	Symbol	Multiplier	Power of Ten
Terra	Т	trillion	10 ¹²
Giga	G	billion	10 ⁹
Mega	М	million	10 ⁶
kilo	k	thousand	10 ³
none	none	1	10 ⁰
milli	m	1/thousandth	10 ⁻³
micro	μ	1/millionth	10 ⁻⁶
nano	n	1/billionth	10 ⁻⁹
pico	р	1/trillionth	10-12